

PAPER SOLUTION

From Meerut

JEE
MAIN
2026

JAN	SHIFT
28	2 nd

Aryan Agarwal

Founder and CEO

CVPS INTEGRATED STAR COURSE

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The Sum Of Coefficients of x^{499} and x^{500} in the binomial expansion of $(1 + x)^{1000} + x(1 + x)^{999} + x^2(1 + x)^{998} + \dots + x^{1000}$ is

- A** $1002C_{501}$
- B** $1002C_{500}$
- C** $1001C_{500}$
- D** $1001C_{501}$

(Ans : B)

JEE MAIN 2026 PAPER DISCUSSION

#Q. If $\sum_{r=1}^{25} \frac{r}{r^4+r^2+1} = \frac{p}{q}$, where p and q are coprime positive integers, then p + q is equal to

- A** 84
- B** 976
- C** 984
- D** 890

(Ans : B)

JEE MAIN 2026 PAPER DISCUSSION

#Q. $\frac{6}{3^{26}} + \frac{10}{3^{25}} + \frac{10 \cdot 2}{3^{24}} + \frac{10 \cdot 2^2}{3^{23}} + \cdots + \frac{10 \cdot 2^{24}}{3}$ is equal to

- A** 2^{26}
- B** 2^{25}
- C** 3^{26}
- D** 3^{25}

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. By the principal of inverse trigonometric function, the value of tan $\left(2 \sin^{-1} \left(\frac{2}{\sqrt{13}}\right) - 2\cos^{-1} \left(\frac{3}{\sqrt{10}}\right)\right)$ is

- A** $33/56$
- B** $31/55$
- C** $32/59$
- D** 3855

(Ans : A)

JEE MAIN 2026 PAPER DISCUSSION

#Q. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{12(3+[x])}{3+[\sin x]+[\cos x]} dx$ is equal to

- A** $3 + 10\pi$
- B** $11\pi + 4$
- C** $10\pi + 2$
- D** $11\pi + 2$

(Ans : D)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let a triangle ABC such that $A = (0, 0)$ and vertices B and C lie on the parabola $y^2 = 8x$ such that $\left(\frac{7}{3}, \frac{4}{3}\right)$ is the centroid of the $\triangle ABC$ then $(BC)^2$ is equal to

- A** 90
- B** 120
- C** 150
- D** 110

(Ans : B)

JEE MAIN 2026 PAPER DISCUSSION

#Q. Let $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and B be a 2×2 matrix such that $A^{100} = 100B + I$, then of all elements of B^{100} is

(Ans : 0)

JEE MAIN 2026 PAPER DISCUSSION

#Q. Let $A = \{ Z \in C: |Z - 2| \leq 4\}$ and $B = \{Z \in C: |Z - 2| + |Z - 2| \leq 4\}$ then $\max \{Z_1 - Z_2: Z_1 \in A \text{ and } Z_2 \in B\}$ is equal to

- A** 6
- B** 8
- C** 4
- D** 5

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The range of $f(x) = \operatorname{sgn}(\sin x) + \operatorname{sgn}(\cos x) + \operatorname{sgn}(\tan x) + \operatorname{sgn}(\cot x), x \neq \frac{n\pi}{2}$,

$n \in I$, where $\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \\ 0, & t = 0 \end{cases}$

- A** {4, -4, 2, -2}
- B** {-2, 0, 4}
- C** {4, -4, 0, -2}
- D** {2, -2, 0, 4, -4}

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Statement I: $25^{13} + 20^{13} + 8^{13} + 3^{13}$ is divisible by 7.

Statement II: The integral value of $(7 + 4\sqrt{3})^{25}$ is an odd number

- A** Neither statements are correct
- B** Only statement I is correct
- C** Only statement II is correct
- D** Both the statements are correct

(Ans : D)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. If the arithmetic mean of $\frac{1}{a}$ and $\frac{1}{b}$ is $\frac{5}{16}$ and $a, 4, \alpha, b$ are in increasing A.P. then both the roots of the equation $\alpha x^2 - ax + 2(\alpha - 2b) = 0$ lie between

- A** (-3, 0)
- B** (-2, 3)
- C** (0,3)
- D** (-3,1)

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let $y = y(x)$ be the solution of the differential equation $x \frac{dy}{dx} - y = x^2 \cot x, x \in (0, \pi)$. If $y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$ then $6y\left(\frac{\pi}{6}\right) - 8y\left(\frac{\pi}{4}\right)$ is

- A** 2π
- B** -3π
- C** $-\pi$
- D** π

(Ans : C)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. Statement I: The function F defined from $R \rightarrow RF(x) = \frac{x}{1+|x|}$ is one-one

Statement II: The function F defined from $R \rightarrow RF(x) = \frac{x^2+4x-30}{x^2-8x+18}$ is many one

- A** Statement I is correct but statement II is not correct
- B** Statement I and statement II both are correct
- C** Statement I is incorrect but statement II is correct
- D** Both statement are incorrect

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let $f(x) = \lim_{\theta \rightarrow 0} \frac{\cos \pi x - (x^{2/\theta}) \sin(x-1)}{1 + (x^{2/\theta}) \sin(x-1)}$, $x \in R$. Then which of the following is correct.

- A** f is continuous at $x = 1$ and $f(1) = -1$
- B** f is discontinuous at $x = -1$ and $f(1) = -1$
- C** f is continuous at $x = 1$ and $f(1) = 1$
- D** f is discontinuous at $x = 1$ and $f(1) = 1$

(Ans : A)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. Ellipse $\frac{x^2}{144} + \frac{y^2}{169} = 1$ and hyperbola $\frac{x^2}{16} - \frac{y^2}{\lambda^2} = -1$ have same focus and e and L denotes the eccentricity and length f latus rectum of hyperbola then $24(e + L)$ is

(Ans : 296)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. An ellipse has centre at $(1, -2)$ and one of the focus at $(3, -2)$ and one vertex at $(5, -2)$, then the length of its latus rectum is

(Ans : 6)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let Q be the image of the point $P(3, 2, 1)$ in the line $\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{1}$, then the distance of Q from the line $\frac{x-9}{3} = \frac{y-9}{2} = \frac{z-5}{-2}$ is

- A** 3
- B** 4
- C** 5
- D** 7

(Ans : D)